Extended RF shimming: Sequence‐level parallel transmission optimization applied to steady‐state free precession MRI of the heart

نویسندگان

  • Arian Beqiri
  • Anthony N Price
  • Francesco Padormo
  • Joseph V Hajnal
  • Shaihan J Malik
چکیده

Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility of three-dimensional (3D) balanced steady-state-free-precession (bSSFP) myocardial perfusion MRI at 3 Tesla using local RF Shimming with dual-source RF transmission

Background Three-dimensional myocardial perfusion MRI offers better myocardial coverage than conventionally used two-dimensional methods. bSSFP three-dimensional myocardial perfusion MRI at 3 Tesla potentially offers further improvement of signal characteristics and may enhance the use of three-dimensional myocardial perfusion MRI for clinical application. Methods Twenty-five healthy volunteers...

متن کامل

Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience

BACKGROUND The purpose of this study was to establish the feasibility of three-dimensional (3D) balanced steady-state-free-precession (bSSFP) myocardial perfusion cardiovascular magnetic resonance (CMR) at 3T using local RF shimming with dual-source RF transmission, and to compare it with spoiled gradient echo (TGRE) acquisition. METHODS Dynamic contrast-enhanced 3D bSSFP perfusion imaging wa...

متن کامل

High-dose dobutamine stress SSFP cine MRI at 3 Tesla with patient adaptive local RF shimming using dual-source RF transmission

Background Image quality of cine imaging using steady state free precession (SSFP) sequences at 3T is insufficient due to increased RF-inhomogeneity (B1 field) and the high sensitivity of SSFP sequences to off-resonance artefacts. Recently, the introduction of a dual source RF transmission system with patient-adaptive local RF-shimming has led to a significant improvement of image quality of SS...

متن کامل

Comparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm

Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...

متن کامل

Spatially resolved extended phase graphs: modeling and design of multipulse sequences with parallel transmission.

A spatially resolved extended phase graph (SR-EPG) framework is proposed for prediction of echo amplitudes in the presence of spatially variable radio frequency (RF) fields. The method may be used to examine any regularly repeating pulse sequence and provides a design framework for parallel transmission (PTx) systems; in this work signal homogeneity in static pseudo-steady state (SPSS) turbo sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2017